JUL-M520 双通道导轨式测力变送器

V2. 1

使

用

说

明

书

当前版本: V2.1 修改日期: 2024-4-14

2 通道导轨式测力变送器

目录

第一	章	概述	2
1	1 产 5	品简介	2
1.	1 / н	HIP71	_
1.2	2 安全	È提示	. 2
1.3	3 技才	术参数以及外形尺寸	. 3
1.4	4接口	□定义	. 3
盆一	音	操作方法	4
2.	1 按領	建以及显示区域定义	4
2.2	2 参数	效显示与设置	.4
	2.2.	1 01-SEt 系统参数	5
	2.2.	2 02-Un 备用	6
	2.2.	3 03-CAL 系统操作	6
	2.2.	4 04-INF 系统信息	6
第三	章	辅助说明	8
3.	1 моі	DBUS 通讯协议	8
3.2	2 其作	也通讯	8
	3.2.	1 主动发送之协议	8
3.3	3 其作	也功能	8
3 4	4 MO	DBUS RTII 通信空例	9

第一章 概述

1.1 产品简介

感谢您选择本公司的产品。在使用本产品之前,请仔细阅读 本手册以使本产品能最大程度发挥作用。

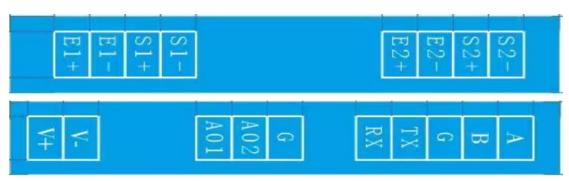
本产品采用 24 位 Σ - \triangle ADC,将桥式称重传感器的模拟信号转换为数字信号,共有 2 路。

装置采用宽工作电压供电方式,适用于16-30VDC电源系统。

产品特点:

- 1. 具有防射频 RFI/电磁 EMI 干扰, 具有很强的 EMC 特性;
- 2. 16-30V 宽电压供电;
- 3. 高速 24 位 Σ - \triangle ADC 采样, 高达 500Hz 以上;
- 4. 通讯接口完备,标配 232,485 和 2 路 AO。

1.2 安全提示



- 本仪表具有抗干扰设计。请务必将仪表进行可靠接地,且与 交流电源接地线分开
- 2. 不要在可燃性气体环境中使用
- 3. 避免阳光直射
- 4. 通讯站点建议使用与模块同一24V电源供电,否则通讯连接 需通过隔离模块对外传输[例如 PLC 是 AC220V, PLC 与本模 块需要增加通讯隔离模块]。

1.3 技术参数以及外形尺寸

测量信号	2 路-20mV~20mV, 单路最大并联驱动 4 个 350 欧姆称重传感器
采样频率	500Hz
检测精度	III 级
分辨率	1/500000
通讯接口	标配 1 路 232, 1 路 485, 2 路 AO。
非线性度	0. 005%FS
工作电源	模块供电 16-30V DC。传感器供电 5V。
重量	约 0. 1kg
外形尺寸	92*72*59,长*宽*高,单位 mm
功耗	< 5W
工作温度	-20 [~] +65℃

1.4 接口定义

说明

- 1: V+、V-为模块供电,建议 24V 直流;
- 2: E1+、E1-、E2+、E2-、为传感器激励接线, S1+、S1-、S2+、S2-为 1-2 路传感器信号接线,;
- 3: B、A 为 485 接口; GND、TX、RX 为 232 接口; A01,AO2 是模拟量接口, G 是模拟量的负端;
 - 4:传感器屏蔽线可靠接地。

第二章 操作方法

2.1 按键以及显示区域定义

主画面显示重量值。2通道循环切换显示。CH01之后的值是1通道重量,CH02 之后的值是2通道重量。

共 4 个按键:

:进入菜单/返回上一级。主画面长按,输入密码解锁(密码 123)。

□ 菜单画面为改变菜单选项,修改参数画面,移动光标。

· 菜单画面为改变菜单选项;修改参数画面,增加数值。主画面长按,所有通道置零

三. 确认本次操作。

2.2 参数显示与设置

输入参数之前,在主画面按 键,需要输入密码 123;

可按切换显示 02-Un(备用)、03-CAL(系统操作)、04-INF(系统信息)。选定设置功能后,按下 ■ ■ 健即可进入相应的参数表。此时,按 ■ 可切换显示其他的参数。按 ■ 健,进入 参数修改状态或者下一级显示。按住 ◯ 键 3 秒以上,可直接退出到重量显示界面。

2.2.1 01-SEt 系统参数

在主画面按 键, 当显示 01-SEt 时, 按 键, 进入系统参数显示, 参数如下表:

显示符	 定义	缺省值(范围)	描述	寄存器
01-000		2(0-4)	1HVF	1001
01-001	零点 1	V- /	保存的零点采样值。	1003
01-002	零点 2	0(0-999999)		1005
01-003	线性系数 1	1000(1-999999)	校满时形成的系数。	1007
01-004	线性系数 2	, ,		1009
01-005	滤波等级	16(0-19)	数值越大,滤波效果越好,但重量显示更滞后。	1011
01-006	分度值	0(0-5)	0:1 1:2 2:5 3:10 4:20 5:50。	1013
01-007	稳定范围	0.01(0.00-99.99)	这个值大于 0 时,开始判断稳定。	1015
01-008	稳定时间	0.30(0.00-9.99)	此时间内,重量变化量在稳定范围内,则稳定。	1017
01-009	蠕变范围	0.00(0.00-99.99)	这个值大于 0 时,进行蠕变修正。	1019
01-010	蠕变时间	10.00(0.00-99.99)	此时间内, 重量变化量在蠕变范围内, 且一直稳定, 则 进行蠕变修正。	1021
01-011	置零范围	0.00(0.00-99.99)	这个值大于0时,进行自动置零操作。	1023
01-012	置零时间	1.00(0.00-9.99)	此时间内,重量在该范围内,且一直稳定,则进行自动 置零。持续稳定只置零一次。	1025
01-013	通讯地址	1(0-128)		1027
01-014	1口波特率	1(0-4)	0:9600 1:19200 2:38400 3:57600 4:115200	1029
01-015	1口校验	0(0-2)	0:无校验 1:偶校验 2:奇校验	1031
01-016	1口功能	0(0-9)	0:RTU 1:主动发送 其余:备用	1033
01-017	1口32位顺序	0(0-3)	0:1234 1:2143 2:3412 34321	1035
01-018	2 口波特率	1(0-4)	0:9600 1:19200 2:38400 3:57600 3:115200	1037
01-019	2 口校验	0(0-2)	0:无校验 1:偶校验 2:奇校验	1039
01-020	2 口功能	0(0-9)	0:RTU 1:主动发送 2: TCP(有以太网模块时有效) 其余:备用	1041
01-021	2 口 32 位顺序	0(0-3)	0:1234 1:2143 2:3412 34321	1043
01-022	主动发送间隔	200(1-1000)	单位为 ms	1045
01-023	AO1 功能	0(0-9)	0:正向 4-20mA	1047
01-024	AO2 功能	0(0-9)	0:正向 4-20mA	1049
01-025	AO1 量程	100.00(0-9999.9		1051
01-026	AO2 量程	100.00(0-9999.9		1053
其余			备用	

2.2.2 02-Un 备用

2.2.3 03-CAL 系统操作

在主画面按 键, 当显示 **01-SEt** 时, 按 可切换显示为 03-CAL, 按 键讲入 模块的功能操作,例如校零、校满等。包含的操作如下表:

显示符	功能	描述	
03-000	校零 1	1-2 通道校零	
03-001	校零 2	1-2 地型仪令	
03-002	校满 1	1-2 通道校满	
03-003	校满 2	1-2 地坦牧禰	

校零: 当显示 03-000 时,按 键,显示采样值,此时再按 键,显示 3 秒倒计时,计 时结束,自动保存零点,并且返回03-000,1号通道校零结束。

校满: 当显示 03-002 时,先在称台上放重物(砝码),再按 键, 输入重物的重量, 按 键确认,此时将显示重物重量。如果信号有错,将提示 ERR 错误。此时,再按 键, 显示 3 秒倒计时, 计时结束, 自动保存满度系数值, 并且返回 03-002。1 号通道校满 结束。

2.2.4 04-INF 系统信息

在主画面按 键, 当显示 01-SEt 时, 按 可切换显示为 04-INF, 按 键进入 模块的功能操作,例如校零、校满等。包含的操作如下表:

显示符	功能	描述
04-000	版本等查询	查询版本、仪表错误等信息
04-001	恢复默认	设置密码,恢复默认等
04-002	出厂测试	出厂测试以及相关出厂操作

版本等查询: 仅供厂家使用

密码管理等: 当显示 **04-001** 时,按 键,显示 "01-dEF"。按 键,然后选择 YES,

2 通道导轨式测力变送器

再按量键,可恢复默认。

出厂**测试:** 当显示 **04-002** 时,按**些**键,之后可通过按**≥∨** ▲ 循环显示 "CH01"、"CH02",

"Ao1-I", "Ao1-V", "Ao2-I", "Ao2-V"。按上键进入对应功能。

"CH01"、"CH02"可查询对应通道采样值;

"Ao1-I-"/"Ao1-V-/Ao2-I-"/"Ao2-V-"为2个AO通道电流[I]/电压[V]的零/满点设置,

按 键。"Zxxxx"输入零点,按 键保存后,"Fxxxx"输入满点,调整好后按 键保 存。在调整数值之时,可以同时用万用表测力输出电压值是否正确。

第三章 辅助说明

3.1 modbus 通讯协议

功能	数据类长度	描述	寄存器地址	
重量 1		写入 0:校零;写入其他数值,表示输入称	1	
重量 2	32 位整形	台重物重量,校满。假如重量2个小数点,	3	
		砝码 10.00,则写入 1000。		
采样值 1	32 位整形		9	
采样值 2	32 仏登形		11	
总置零	32 位整形	只写,写入 0:校零;	15	
其他状态 1		采样错误。第2位,信号溢出,可能传感	17	
其他状态 2	32 位整形	器坏或者信号线断;第3位,采样模块错	19	
		误。		

3.2 其他通讯

3.2.1 主动发送之协议

起始符	符号[+/-]	数据[6 位]	小数点[0-3]	异或校验	结束
0x02	0x2B/0X2D	6 个字节	0x30-0x33	2 个字节	0xFF

- 1:数据采用 ASCII 码进行传递。例如显示为 1234,则传递 16 进制 30 30 31 32 33 34
- 2:异或校验位之前的除去起始符的所有数据进行异或运算,会得到一个字节的数据,然后把这个字节转换为两个 ASCII 码,例如,计算得到的校验为 0x4A,其对应的 16 进制 ASCII 为 34 41。
 - 3: 4 通道数据,符号和数据共 4 帧,每帧数据包含了 7 个字节,分别是符号+数据。

3.3 其他功能

如果需要以太网网功能,请提前联系厂家,关于以太网的配置和测试工具,可向厂家获取。

3.4 MODBUS RTU 通信实例

本公司地址采用西门子系统地址描述规则,实际发送指令,指令为16进制,地址需要减1。

主机对从机读数据操作

1、主机读通道1测量数据,则报文是:

 01
 03
 00 00
 00 02
 C4 0B

 从机地址
 功能号
 数据地址
 读取数据个数
 CRC 校验

那么单片机接收到这串数据根据数据计算 CRC 校验判断数据是否正确,如果判断数据无误,则结果是:返回信息给主机,返回的信息也是有格式的:返回内容:

01 03 04 00 01 E2 40 E2 A3 从机地址 功能号 数据字节个数 四个字节数据 CRC 校验四个 16 进制数据转换为 10 进制,就是 123456

2、主机读通道 2 测量数据,则报文是:

 01
 03
 00 02
 00 02
 65 CB

 从机地址
 功能号
 数据地址
 读取数据个数
 CRC 校验

那么单片机接收到这串数据根据数据计算 CRC 校验判断数据是否正确,如果判断数据无误,则结果是:返回信息给主机,返回的信息也是有格式的:

返回内容:

01 03 04 00 00 00 27 BA 29 从机地址 功能号 数据字节个数 四个字节数据 CRC 校验 四个 16 讲制数据转换为 10 讲制,就是 39

3、主机读通道 1、2 测量数据,则报文是:

 01
 03
 00 00
 00 04
 44 09

 从机地址
 功能号
 数据地址
 读取数据个数
 CRC 校验

那么单片机接收到这串数据根据数据计算 CRC 校验判断数据是否正确,如果判断数据无误,则结果是:返回信息给主机,返回的信息也是有格式的:

返回内容:

01 03 08 00 00 00 01 00000026 29 CD 从机地址 功能号 数据字节个数 1 通道数据 2 通道数据 CRC 校验 通道 1 数据转换为 10 进制,就是 1 通道 2 数据转换为 10 进制,就是 38

E-mail: tech@juli-sensor.com

Tel: 14774758475

主机对从机写数据操作

清零指令:

总清零 (同时对 1、2 通道清零): 01 10 00 0E 00 02 04 00 00 00 00 72 23 通道 1 清零 (单独清零 1 通道): 01 10 00 00 00 02 04 00 00 00 00 F3 AF 通道 2 清零 (单独清零 2 通道): 01 10 00 02 00 02 04 00 00 00 00 72 76

Modbus RTU CRC 校验码计算方法

在 CRC 计算时只用 8 个数据位,起始位及停止位,如有奇偶校验位也包括奇偶校验位,都不参与 CRC 计算。

CRC 计算方法是:

- 1、 加载一值为 OXFFFF 的 16 位寄存器,此寄存器为 CRC 寄存器。
- 2、 把第一个 8 位二进制数据(即通讯信息帧的第一个字节)与 16 位的 CRC 寄存器的相 异或,异或的结果仍存放于该 CRC 寄存器中。
- 3、 把 CRC 寄存器的内容右移一位,用 0 填补最高位,并检测移出位是 0 还是 1。
- 4、 如果移出位为零,则重复第三步(再次右移一位);如果移出位为 1,CRC 寄存器与 0XA001 进行异或。
- 5、 重复步骤3和4,直到右移8次,这样整个8位数据全部进行了处理。
- 6、 重复步骤2和5,进行通讯信息帧下一个字节的处理。
- 7、 将该通讯信息帧所有字节按上述步骤计算完成后,得到的 16 位 CRC 寄存器的高、低字节进行交换
- 8、 最后得到的 CRC 寄存器内容即为: CRC 校验码

代码:

///<summary>

/// 转换成 CRC 码


```
//modbus CRC16
publicvoid CRC16Calc(byte[] dataBuff, int dataLen)
{
    int CRCResult = 0xFFFF;
        (dataLen < 2)
    if
         return;
    }
        (int i = 0; i < (dataLen - 2); i++)
    {
           CRCResult = CRCResult ^ dataBuff[i];
            for (int j = 0; j < 8; j++)
            {
                    if ((CRCResult \& 1) == 1)
                    CRCResult = (CRCResult >> 1) ^ 0xA001;
                    else CRCResult >>= 1;
            }
    dataBuff[dataLen - 1] =Convert.ToByte(CRCResult >> 8);
    dataBuff[dataLen - 2] =Convert.ToByte(CRCResult & Oxff);
}
```

Tel: 14774758475